خوش آموز درخت تو گر بار دانش بگیرد، به زیر آوری چرخ نیلوفری را

تمرین 13: قانون کسینوس، استفادۀ کاربردی

تمرین 13: قانون کسینوس، استفادۀ کاربردی

کد مطلب : 9445


تونی اسمیت (Tony Smith) در سال \(1912\) در "اورنج جنوبی" (South Orange) در نیوجرسی بدنیا آمد. در کودکی او از بیماری سل (tuberculosis) رنج می برد. او زمانش را صرف بازی کردن با جعبه های داروها می کرد. یکی از مجسمه های ساخت او با نام "مونداگ" (Moondog) متشکل از چندین مثلث متساوی الاضلاع و متساوی الساقین می باشد که هنر و ریاضیات را با یکدیگر ترکیب کرده اند. از اطلاعات ارائه شده در طرح زیر برای تعیین ماکزیمم عرض مونداگ استفاده کنید.

آموزش سالیدورکز 20-2019

تمرین 13: قانون کسینوس، استفادۀ کاربردی

پاسخ


تمرین 13: قانون کسینوس، استفادۀ کاربردی
چیزی که بدنبالش هستیم \(BH\) یعنی خط قرمزی است که در تصویر زیر می بینید، می باشد.

تمرین 13: قانون کسینوس، استفادۀ کاربردی
$$
BH = BC + CG + GH
$$
برای رسیدن به این مقادیر روی سه تا از مثلث ها از قوانین سینوس و کسینوس استفاده می کنیم. دقت کنید که مثلث های روبروی آنها هم شکل و هم اندازه هستند و در نتیجه مقادیر بدست آمده در این سه مثلث عیناً در سه مثلث روبرویی نیز تکرار می شود، هرچند می توانید این هم اندازه و هم شکل بودن را نیز نادیده بگیرید و روی هر شش مثلث عملیات مربوطه را انجام دهید.

ابتدا از \(\triangle{ABC}\) آغاز می کنیم:
$$
\text{In } \triangle{ABC} \text{:}\\
\frac{a}{\sin A} = \frac{b}{\sin B}\\
\frac{a}{\sin 33.5^{\circ}} = \frac{161.3}{\sin 73.25^{\circ}}\\
a = \frac{161.3 \sin 33.5^{\circ}}{\sin 73.25^{\circ}} = 92.972...\\
a = BC \approx 93.0 \text{ cm}
$$
سپس به سراغ \(\triangle{DBC}\) می رویم، از آنجا که این مثلث یک مثلث متساوی الاضلاع می باشد همۀ اضلاع آن با هم برابر خواهند بود:
$$
\text{In } \triangle{DBC} \text{:}\\
d=b=c=93.0 \text{ cm}
$$
حال به سراغ \(\triangle{DCE}\) می رویم:
$$
\text{In } \triangle{DCE} \text{:}\\
\angle{C} = 180^{\circ} - 73^{\circ} - 29^{\circ} = 78^{\circ}\\
\text{ }\\[2ex]
\frac{d}{\sin D} = \frac{e}{\sin E}\\
\frac{d}{\sin 73^{\circ}} = \frac{93.0}{\sin 29^{\circ}}\\
d = \frac{93 \sin 73^{\circ}}{\sin 29^{\circ}} = 183.445...\\
d = CE \approx 183.4 \text{ cm}
$$
تکۀ بعدی پازل ما در \(\triangle{CEG}\) می باشد:
$$
\text{In } \triangle{CEG} \text{:}\\
\angle{C} = \angle{BCG} - \angle{BCD} - \angle{DCE} \\
\angle{C} = 180^{\circ} - 60^{\circ} - 78^{\circ} = 42^{\circ}\\
\angle{G} = \angle{C} = 42^{\circ}\\
\angle{E} = 180^{\circ} - 42^{\circ} - 42^{\circ} = 96^{\circ} \\
\text{ }\\[2ex]
\frac{e}{\sin E} = \frac{c}{\sin C}\\
\frac{e}{\sin 96^{\circ}} = \frac{183.4}{\sin 42^{\circ}}\\
e = \frac{183.4 \sin 96^{\circ}}{\sin 42^{\circ}} = 272.585...\\
e = CG \approx 272.6 \text{ cm}
$$
هم اکنون همۀ پارامترهای لازم برای رسیدن به پاسخ نهایی را در اختیار داریم:
$$
BH = BC + CG + GH\\
BH = 93.0 + 272.6 + 93.0 = 458.6 \text{ cm}
$$





نویسنده : امیر انصاری

دیدگاه ها(0)

دیدگاه خود را ثبت کنید:

انتخاب تصویر ویرایش حذف
توجه! حداکثر حجم مجاز برای تصویر 500 کیلوبایت می باشد.

لطفا پیش از ارسال دیدگاه ، به نکات زیر توجه فرمایید :

- از نوشتن دیدگاه های غیر مرتبط با پست جدا خودداری کنید.
- لطفاً دیدگاه های خود را با حروف فارسی تایپ کنید، دیدگاه های فینگیلیش تایید نمی شوند.
- قبل از ارسال دیدگاه حتما متن پست و نظرات سایر دوستان را بخوانید . نظرات اسپم و تکراری تایید نخواهند شد.
- نظر شما ممکن است بدون پاسخ تایید شوند که در این صورت باید منتظر پاسخ از سوی دیگر کاربران باشید .
- لطفا انتقادات و پیشنهادات و همچنین درخواست های خود را از طریق ایمیل khoshamoz[at].hotmail.com ارسال نمایید
- چرا آموزش های سایت خوش آموز در قالب فایل pdf به صورت یکجا ارائه نمی شوند؟
- چرا برخی پرسش های کاربران پاسخ داده نمی شوند؟